______ 2111/2018

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

November 2016

Max. Marks:100 Class: FE(C/M/E) Name of the Course: BEE I Instructions:

Semester: I

Duration: 3 hours Program: B.Tech Course Code :BT102

Master file.

- Question no 1 is compulsory
- Attempt any FOUR questions out of the remaining SIX questions
- Answers to all sub questions should be grouped together
- Figures to the right indicates full marks
- Any assumptions must be specified clearly.

Q		Mark	Course	Module
No		S	outcom	No.
			es	
1.a	Using source transformation find the current in the 4Ω resistor. 5A \bigcirc $2 \cdot 2 \cdot 1$ \bigcirc $2 \cdot A = 4 \cdot 2 \cdot 1$	4	1	
b.	Draw and explain the power triangle for a three phase lagging load.	4	2	4
C.	If the 12 Ω resistor draws a current of 1A as shown in the figure, find the value of resistance R. R 2A A A A A A A A A A 	4	1	1
d.	Explain the behaviour of ac through pure capacitor. Show the average power consumed here is zero	4	1,3	3
e	Explain the losses that takes place in a transformer.	4	4	5

2.a	Prove that for a three phase balanced delta connected load ,line current	10	3	4
b.	is $\sqrt{3}$ times the phase current (with neat phasor diagrams). Calculate the current in the 4 Ω resistor of the circuit by superposition	10	2	2
	theorem. $2 \cdot 2 \cdot 1 \circ A$ $1 \cdot 2 \cdot 2 \circ V$ $1 \cdot 2 \cdot 3 \cdot 2 \cdot 4 \cdot 2 \circ V$ $5 \cdot A$ $4 \cdot 2 \cdot 2 \circ V$ $5 \cdot A$ $5 \cdot A$ $4 \cdot 2 \circ V$ $5 \cdot A$ $5 \cdot A$ 5			
3a.	Three identical coils each having a resistance of 10 Ω and inductive reactance of 10 Ω are connected in i)star, and ii)delta connection, across 400V three phase ac supply. find in each case the line current and readings on each of the two wattmeters connected to measure power.	10	3	4,7
b.	Using Nortons theorem find I I = I = I = I = I = I = I = I = I = I =	7	2	3
c.	Explain slip in three phase induction motors.	3	4	6
4a	Obtain the equivalent circuit of a 200/400V,50Hz single phase transformer from the following test data. OC test: 200V 0.7A 70W (on lv side) SC test : 15V 10A 85W (on hv side)	10	3	5
b.	For the circuit given below determine R for maximum power transfer Also calculate the maximum power. 40x 100V	10	2	2

2

c 'r

		·		
5a	For the given circuit find circuit current ,voltage drops V_1, V_2 and power factor. 10 $10 \times 0.05 \text{ H}$ 20 $10 \times 0.1 \text{ H}$ 50/4f 200 V_2 300 V_2 300 V_2	10	3	3
b.	By using nodal analysis find V_1 and V_2 5x 80V V_1 V_2 V_1 V_2 V_2 ZOV	10	1	1
ба.	Why single phase induction motors are not self starting? Explain any two types single phase induction motors with phasor diagram.	10	4	6
b.	 Two impedances 14+j5 Ω and 18+j10 Ω are connected in parallel across 200V,50Hz supply .Determine i) Admittance of each branch and of the entire circuit. ii) Current in each branch and total current iii) power and power factor of each branch. iv) total power factor iv) draw the phasor diagram 	10	1,3	3
7a.	Explain the working of a dc motor and significance of back emf.	6	4	6
b.	Explain the working principle of a transformer .Draw the phasor diagram of a single phase transformer having lagging power factor load.	8	4	5
c.	Calculate equivalent resistance between A and B for the given circuit. A $\frac{20^{15}}{15^{15}}$ 45^{15} 45^{15} 45^{15} 45^{15} 45^{15} 45^{15} 45^{15} 40^{15} 40^{15}	6	1	1

Ŷ <u></u>ĵ

÷.

8

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

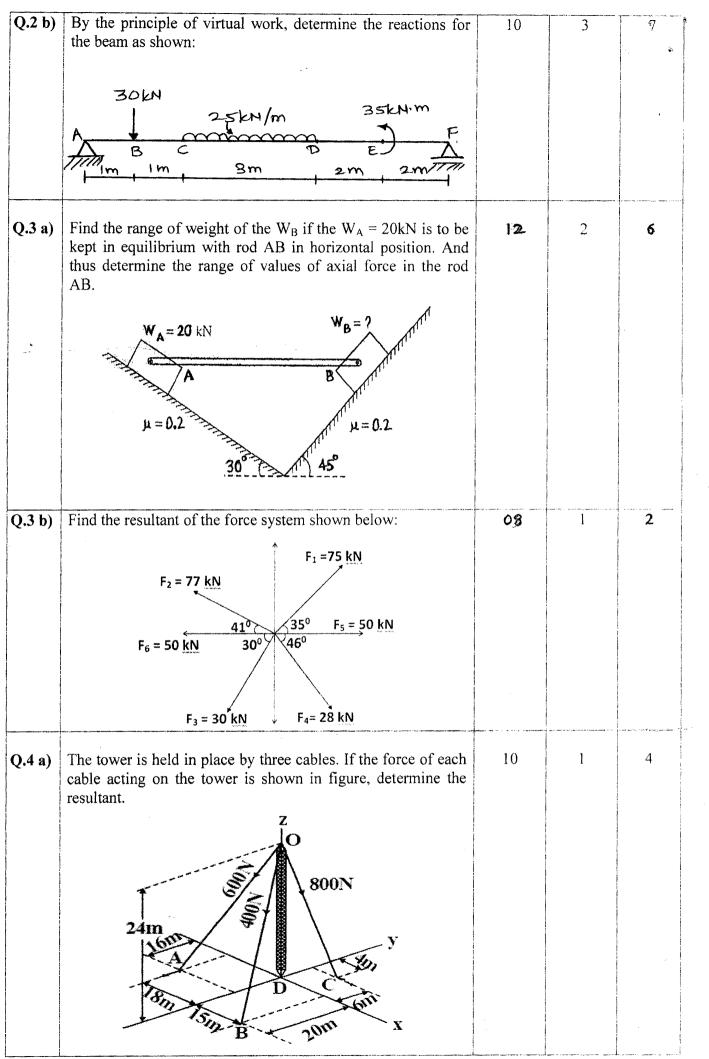
(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

Program: F.Y.B.Tech. (Civil/Mechanical/Electrical) Course code: BT104 Name of the Course: Engineering Mechanics-I Semester: I

Date: 28 /11/ 2016 Duration : 3 Hr Maximum Marks : 100

Master File.

Instructions: 1) Question No.1 is compulsory.

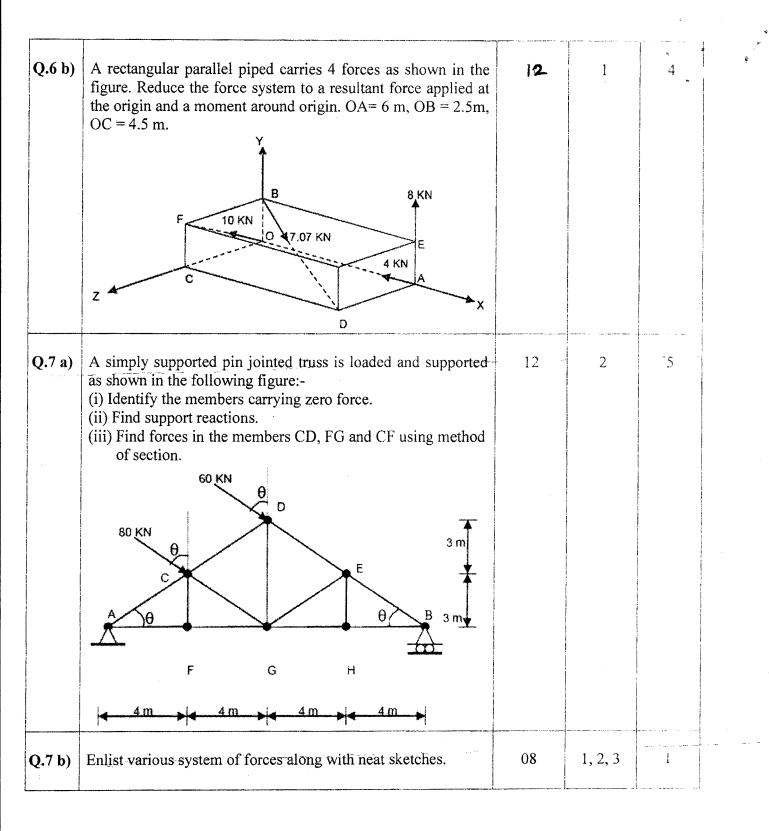

2) Out of remaining questions, attempt any FOUR questions.

3) In all **FIVE** questions to be attempted.

4) All questions carry equal marks.

5) Answers to each question to be started on fresh page.

Q. No.		Maximum Marks	Outcome	Module No,
Q.1	Attempt any five:-		Number	
- a)	Explain Moment and Couple.	4	1, 2, 3	1
b)	State and prove Varignon's Principle.	4	1, 2, 5	
c)	Explain various types of loading.	4	1, 2, 3	2
d)	Explain rectangular components of force in space. Also prove that $\cos^2\theta x + \cos^2\theta y + \cos^2\theta z = 1$	4	1, 2, 5	3 4
e)	Explain Perfect truss, Imperfect truss, Deficient truss and Redundant truss.	4	1,2	5
	Explain Coefficient of friction, Angle of friction, Angle of Repose and Cone of friction.	4	2	6
g)	Explain the work done by a force and state the principle of virtual work for a particle.	4	3	7
	The 295 N pipe is supported at A by a system of five cords as shown in figure. Determine the force in each cord for equilibrium.	10	2	3
	C B A E			
	Pipe			



Page 2 of 4

Q.4 b)	Determine reactions at support A and B. $50kN/M$ $1.5m$ 60° $1.5m$ B $1.5m$ $1.5m$ $3m$ $1.5m$ $1.5m$ $3m$	10	2	3
Q.5 a)	Determine magnitude and direction of resultant and locate it with respect to point C for the following force system 100 N 80 N 120 N 75° A 2 m 2 m B 50 N	10	1	2
Q.5 b)	Find forces in all member by using method of joints. $ \begin{array}{c} $	10	2	5
Q.6 a)	An effort of 200N is required to move a certain body up in an inclined plane of angle 15° , the force is acting parallel to the plane. If the angle of inclination at the plane is made 20° , the effort required again applied parallel to the plane, is found to be 230N. Find the weight of the body and coefficient of friction.	08	2	6

4

.

